
cv,
00
00
N'1'1 FILE COPY
N

SDRL Q14-02021-E

Q14 - Standards Development Plan
Ada Interfaces to POSD
Analysis and Recommendations

Prepared for
Software Technology for Adaptable
Reliable Systems (STARS)
Unisys STARSCenter
Shipboard and Ground Systems Group
Reston, Virginia

Prepared by
Unisys Corporation
Defense Systems
System Development Group
P.O. Box 517, Paoli, PA 19301-0517

Contract No. F19628-88-D-0031
IDWO P.O. 010412 fT]

12 April 1989 * "ECTE
NOV 14 1

09' , . °M --N 10 11 13 125
k r. ' f.,a , 4 n . zU*l i

REPORT DOCUMENTATION PAGE Form Ap p0rov

PumlIC reo 'r O a ren r t",% -cie econ ot ntormatfor is estmalte to average hOur er eftwins. inclci'C the time for re ¥"e.ng instructions. searcn-nC cats a. sources
gtP.re ana mainftaininlg the oats nwaod Ibn comoY.Dtnq ano rev.*..rq IIIe (coeiciof 0Information '.ena comml~enits regaraing thisr b.iroen estimate or an. :tner aIWIcl 01tp.

conect3i,- l orsv- &0"I '- "C . g suggesions tor reau.ctng tis urcir ic v~ashingion "eaauarterI Services. Dietorate for tri$0,nltin oerations and: Reciort, 121S ,effers~r
Da.,% -q, '. USwte 1 2C4 &'inqtCn VA 22202-]02. and tO t0 IlP .J Manaoe

m r ! nd b ud aOge! DerC'r edu tO PrOleCt (0704.0188). W&lhinaton. DC ,.503

1. AGENCY USE ONLY (Leave blank) I 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
1 7 April 1989 Final

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Interface Standards Informal Technical Data,
Information Resources Dictionary System (IRDS) STARS Contract

.AUTHOR(S) F 9628-88-D-0031

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZATION
REPORT NUMBER

Unisys Corporation
12010 Sunrise Valley Drive GR-7670-1066(NP)

Reston, VA 22091

9. SPONSORING; MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

Department of the Air Force
Headquarters, Electronic Systems Division (AFSC)
Hanscom AFB, MA 01731-5000 Q14-02021

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION; AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release;
distribution is unlimited

13. ABSTRACT (Maximum 200 words)

- This report describes Information Resources Dictionary System (IRDS)
and the status of IRDS standardization efforts as of 1989. An
Information Resources Dictionary System (IRDS) provides an inventory
system for the information environment of an enterprise and is intended
to be the principal tool for managing the information resources of an
enterprise. This report addresses early, federally funded users of the
IRDS standard and research which involves the intersection of Ada
Programming Support Environments (APSE) and the IRDS standard. The
report uses recently published guidelines for the comparison of
semantic data models to analyze the models of CAIS-A, the ANSI IRDS
standard, and the STARS Information Object Model. The results of this
study are a set of conclusions concerning the importance of the IRDS
standards to STARS. In general, this paper is concerned with the role
STARS should play as an Ada advocate within the ANSI IRDS standards
committee, the use of CAIS-A nodes for an IRDS implementation, and the
relationship betw.en IRDS interfaces and the STARS Environment Object
Manager (EOM). V .1 4

14. SUBJECT TERMS I ! iS. NUMBER OF PAGES

Information Resources Dictionary System (IRDS) 31
IRDS and ADA Programming Suppcr* rnvl.rorm-nt (APSE) 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT Of THIS PAGE OF ABSTRACT

nclassified Unclassified Unclassified SAR

1. Executive Sunnary

POSIX is a standard interface set for operating systems designed for portability.
POSDC can provide the portability layer underlying the Software Engineering
Environment (SEE) to allow the baseline environment to be easily ported. It is
expected that a wide range of COTS implementations, spanning a large range of
hardware architectures and operating systems, will be available.

CAIS-A [CAIS-A88] has been proposed as the primary set of interfaces for the SEE
object base and also for establishing portability of the software within the SEE.
Because there are overlaps in the objectives for POSIX and the CAIS, there are some
apparent overlaps in the functions provided by the interfaces. The main difference
between the two sets of interfaces is that the CAIS contains a large project database
which is responsible for organizing resources in a common manner. It is the existence
and architecture of this object model which makes it desirable to have Input-Output
and execution control interfaces as part of CAIS-A. Thus, it is concluded that there is
no actual overlap in function in the Input-Output model for persistent data nor in the
execution control models. The CAIS-A interfaces should be the portable interface set
for tools, while POSIX offers a method for gaining portability for the CAIS and other
interfaces in the base level of the SEE.

As a result of its importance to the SEE, it is recommended that the POSIX
standardization effort be supported by STARS and that the STARS involvement in
standardization efforts now underway continue.

2. Introduction

The Portable Operating System Interface (POSIX1) is not itself an operating system,
but is a set of interfaces for accessing operating system functions. This subtle
distinction is important, for while the interface set has its historical roots in UNIX 2,
and is very similar to the System V Interface Definition (SVID), the POSIX interfaces
may be implemented for access to nearly any existing operating system, including the
various forms of UNIX, and the proprietary operating systems developed by such
manufacturers as Digital Equipment Corporation, Unisys and IBM, and the
multitasking operating systems running on personal computers. This expectation of
widespread applicability is encouraged by the fact that nearly all operating system
vendors are represented on the POSIX committee, including Digital Equipment
Corporation, IBM, Unisys, AT&T, Sun, Convergent Technologies, and Microsoft.
Industry organizations such as X/Open and /usr/group are also represented on the
committee.

Such support to the standard leads to expectation of widespread availability of
implementations. Many vendors, including AT&T, have indicated intent to provide
POSIX conforming interface sets, and a few, including IBM, already claim conformance
to the standard. With such wide availability of Commercial-Off-The-Shelf (COTS)
implementations available, it makes sense to try to exploit POSIX as a portability
vehicle for the Software Engineering Environment (SEE). Since the Unisys Baseline
Environment task, Q8, has already ported an implementation of CAIS-A to UNIX, the

1POIIX is pronounced pahs-icks, as in positive.

'UNIX is a registered trademuk of AT&T.

POSIX interface set is substantially validated as a potential portability base.

The significance of POSIX to the STARS program is presented in the following sections
which describe the motivation for why POSIX is an important standard to STARS, how
POSIX relates to the STARS SEE, the standards process surrounding the standards
development, especially that of the associated Ada standard, and finally,
recommendations concerning the role of POSIX in the STARS program are presented.

2.1. Motivation: A Historical Perspective

There were several factors contributing to the need for a standardized interface to
operating systems. First and foremost there is the problem that nearly all operating
systems are developed in a proprietary manner. All major manufacturers have
developed proprietary operating system designs. For example, Unisys has A Series MCP
and 1100 OS, IBM has a wide variety of operating system styles and designations, and
Digital has VAX/VMS. There are some software companies which offer their own
operating systems: Pick, with the Pick Operating System, and Microsoft with its
MS DOS and PS2 operating systems. The most widespread operating system available
is UNIX, with its multitude of incompatible variations: AT&T's System V, Berkley's
BSD, various incompatible real-time extensions of UNIX such as the one produced by
Interactive Systems, and DARPA's MACH, an experimental operating system developed
by CMU.

With such a wide variety of operating systems, application code is difficult to produce
which is truly portable. For example, such a simple action as gaining access to a
sequential file is made extremely difficult because each proprietary system defines
different rules for creation of directory structures, lengths of file names, syntax for
specification of a file name, and rules for creation of and access to files. Other
operating system dependencies arise in many other areas, particularly in multitasking
and interprocess communication. These problems are visible to the application
programmer, even in such a language as rigidly standardised as Ada. Thus, it is clear
that a well-defined interface to operating systems would help with program portability.

In an attempt to get standardization on an operating system interface set, basing it on
UNIX seems a natural choice because it is already available on a wide range of systems
from microprocessor systems to mainframes. However, no particular proprietary
variety of UNIX can be chosen as the standard because of the chilling effect such a
choice has on competition: as the chosen developer continued to improve the interface
set, competing developers would be later to arrive on the market, and would not be
likely to be as competitive.

In early attempts to gain standardization for government procurements, operating
systems were required to be in conformance to the AT&T System V Interface Definition
(SVID), a public domain interface definition. However, such specification still runs

against competitive notions because the validation suite for SVID is a proprietary
product of AT&T, and the interface definition is under no formal control: AT&T may

change it at any time, giving it an unfair advantage. Also, UNIX is an old system,
which was developed with a minimum of requirements. Thus, it is missing many

features, such as an Ads binding and support for real time systems and

supercomputing. Such necessary extensions to the interface set remain unspecified and

are developed by a wide range of vendors in incompatible ways. Therefore, a formally

2

controlled standard with a well established process for continued improvement and
evolution is necessary.

2.2. Purpose of PO5X

POSIX is intended to be a portable operating system interface which promotes
- program portability through standardized programatic interfaces,
- consistent interpretation across languages through a single, functional

specification, and

reduced programmer training through consistent user interfaces.

The interface set is also expected to evolve and expand. This is particularly important
because the UNIX operating system model is very old (1960's vintage), and was not
developed to handle a wide variety of application areas. It was primarily developed as
a simple development environment for use by the developers at AT&T's Bell
Laboratories. As a result, the model is constantly criticized for its lack of support for
such facilities as inexpensive multitasking ("lightweight processes"), transaction
processing and multiprocessors.

In addition, the interface set must evolve to eliminate its strong dependence on the C
language. This dependence reveals itself in many ways, including its use of signals and
its lack of memory management facilities. In both examples, the interface set relies
heavily on C language features (procedure parameters and the malloc function) which
do not exist in Ada, nor in many other languages.

2.3. The Importance of POSK to STARS

STARS fully recognizes the problems of portability without a well defined set of
interfaces to the operating system on which the SEE is hosted. One of the primary
goals in SEE development is the ability to port the SEE to a wide variety of systems
quickly and inexpensively, while preserving consistent functioning of the environment.

The easiest way to do that is to host the baseline environment (the object management
system, user interface management system, and the portability interfaces) on a set of
interfaces which are supported by a wide variety of vendors. If the interfaces are
available as commercial off-the-shelf products, then rehosting costs will be minimal and
STARS can concentrate its efforts on its more important tasks.

As previously noted, POSIX is expected to be available on a wide variety of systems
ranging from microprocessor based systems to mainframes. In fact, there is already a
commercially available validation suite and vendors who have verified conformance to
the standard.

The Ada binding is receiving reasonably good support from the community, including " For
commercial vendors. At least three prototyping efforts have begun experimentally, 1I

including the public domain effort within the Engineering Information System (EIS) 0

program. The EIS program is a tri-service program, initiated by the VHSIC program, 0ed

and managed by AFWAL (Air Force Systems Command). Unfortunately, the EIS tio

efforts towards an Ada/POSIX binding have been halted temporarily, but are expected
to resume. i on

'I Av,-dlability Oodes
- Avail and/or

Dlst Special

.'.

All of theme factors contribute to the firm belief that the Ads Interfaces will be
available in experimental form in the public domain moon, and in a more robust form
from commercial vendors soon after standardisation.

POSIX provides a substantial base on which the DoD standard Ads Project Support
Environment Interface Sets (APSE'), CAIS and CAIS-A, can be hosted. Thus, it is
recommended that STARS continue to be supportive of, and involved in, the
standardisation of the Ads POSIX interfaces.

3. 0A -A and POSEh
The objectives of CAIS (and CAIS-A) [RAC6 and POSIX have considerable overlap.
One of the primary CAIS objectives is the ability to support Ada program execution on
a wide variety of computers with a wide variety of operating systems, as well as on
bare machine, with no supporting operating system. POSIX objectives are similar in
that it specifies an operating system interface which can be supported by a wide variety
of operating systems.

This overlap in objectives causes a wide overlap in function between the two interface
sets. The overlape are most noticeable in the two areas of program execution control
(processes) and Input-Output. In any case of overlap between availaL" standard
interface sets a decision must be made as to which interfaces should be ,.Bible in the
environment. The following sections describe the overlap in function and provide
recommendations on how STARS should proceed.

3.1. Primary CAIS-A and POSIX Differences

CAIS-A and POSIX, while sharing many similar objectives, also differ in one substantial
way: CAIS-A, as its name suggests, is intended as a modern project support
environment for Ada program development and execution. POSIX in both more limited
and broader in scope. It is not a project support environment and it tries to address
program execution in a language independent manner.

The primary way in which these differences are manifested are in the existence of the
CAIS-A node model. CAIS-A supports a project database which is used by the various
tools to share a common view of the project resources across the entire SEE. POSIX
has no formalized communication technique between tools. Tools either cooperate by
informal agreement as to which files are to be maintained in common, or through
streams of ASCII text with the pipe construct. In either case, POSIX data structuring
is entirely by informal agreement between the tools with no verification of the data
storage structure. CAS-A has a formal definition encoded as part of the project
database and data structure definitions are shared between tools, allowing for
validation of the structure on storage and retrieval.

Another main difference is in access control. The CAIS-A model provides interfaces to
allow tools to operate within a Trusted Computer System (TCS) which meets B3
criteria. When implemented in a TCS, CAIS supports operations in a multi-level secure
environment.

OThe tem AP98 was originsally coined to be Ads Programmiag Suppart Ravrement. HowWeW, the eope a-
peeled to be overed by a complete APSE now ecompaim all upecte of project developmeat, makias tie Mrm "Pro.
ject" moe appropriate

4

3.2. Input-Output

As a primitive operating system function, Input-Output exists in both interface sets. If
one assumes that POSD is an appropriate portability vehicle for the baseline
environment and that the CAIS interface set provides much of the functional base for
the environment, then the question arises of which I/0 set is to be used by the tools in
the environment.

The existence of two I/0 systems does not actually raise a conflict for access to
persistent data. The CAIS I/0 is present and required for access to the contents of the
nodes in the project database. Since there is no POSIX equivalent to the database, the
use of POSDC I/O is not an option. The role of POSDC I/O is as an implementation
vehicle for the CAIS node model.

There is, however, a conflict in the I/O interfaces to be used for non-persistent I/O.
Since Terminal I/O is not heavily reliant on the node model for its functioning, there is
no strong reason for user interaction to be done through the CAIS I/O functions.
Additionally, the user interface functions provided by both CAIS-A and POSIX are very
primitive, offering only simple interface styles without support for such devices as
bit-mapped displays and pointing devices. Since it has been shown that these more
modern devices provide a substantial improvement in programmer productivity, the
SEE should provide a user interface vehicle which will support these devices as well as
today's common text-oriented devices.

In conclusion, it is recommended that CAIS-A I/O be used for access to the contents of
nodes in the project database and a more modern User Interface Management System
should be used for the human-machine interface. POSIX can be used to provide the low
level device support required for implementation of the higher level UIMS, but such
implementation details are not visible to the user.

3.3. Program Execution Control

Another apparent conflict arising from the overlapping objectives is in program
execution control (tasks and process management). Both, CAIS-A and POSIX, provide
processes for control of program execution. In addition, Ads provides tasks for many of
the same functions, adding additional choices for program execution control.

In dealing with program execution that can be managed through the use of Ada tasks,
then clearly one would stay within the language rather than go to a non-Ada execution
model. The primary case in which one must leave the Ada execution model is to
execute another Ada program, such as a tool in the SEE. This is especially necessary
for certain tools in the environment, such as the Ada Command Environment (ACE).

While there is some overlap in function in the program execution control, the process
model in CAIS-A is intimately tied to the node model. It is through the process model
that access control for use in trusted systems is established, database views are defined,
and it is the mechanism which provides for the database transaction model, especially
multiprocessor transactions. Thus, the process model cannot be replaced by the more
primative model present in POSIX.

5

3.4. The Role of POSIX in the STARS Architecture

The use of CAIS-A as the baseline environment, coupled with a mature User Interface
Management System, provides a completely portable environment on which the tools of
the SEE may be hosted. Since this layer provides a complete set of functions required
for the SEE, and is also a portable interface layer, one must question the importance of
an older operating system model such as POSDI to STARS.
It is clear that if one of the interface sets provides a sufficient set of functions for
implementation of the tool set, then the other interface set should not be visible. One
of the goals of the SEE architecture is to minimize the number of interfaces in order to
reduce the number of decisions that need to be made (and possibly re-made) by a tool
developer and also to reduce the cost in construction of the interfaces.

POSIX provides a good set of fundamental interfaces between an implementation of the
baseline environment and the underlying machine and operating system which can be of
use in meeting the portability objectives of the SEE. Through the low level POSIX
primitives for program execution control and Input-Output, one may construct a
baseline environment in which the CAIS-A implementation consists mainly of support
for the project database. Implementation of the program execution control and I/O
facilities in CAIS-A become a matter of implementing the project database
manipulation logic and then use of the POSIX mechanisms for the low level control.

Viewing POSIX as an implementation vehicle for the baseline environment, means that
POSIX is not a visible part of the SEE architecture. It is strictly an engineering detail
in implementation of the SEE. What makes this particular engineering decision one
that is architecturally important is the fact that using it as a portability layer between
the project database/user interface layer and the hardware/operating system layer
provides the benefits of portability: reduced cost of porting the baseline environment
between systems. This supports the software first goal of developing a hardware and
operating system independent SEE.

4. POSIX Standards Activity

POSIX standards activities are described in the following sections with a description of
the overall organization of the committee, the current state of standardization, the
approach being taken to POSIX standardization, and then an in-depth look at the Ada
standardization process. The Ada standards process is described in terms of the
philosophy taken towards the binding, with a comparison to the philosophies used on
other Ada bindings, and, finally, the Ada binding development plan and progress.

4.1. POSIh Committee Organisation

The POSIC standardization effort has been initiated under the auspices of the IEEE
Technical Committee on Operating Systems (TCOS). The committee is called 1003 and
is broken into several formally identified subcommittees, each with its own charter.
The current list of committees is:

S

Committee Subject
1003.0 Guide to POSI Applications Portability
1003.1 System Interfaces
1003.2 Shell and Utilities
1003.3 Testing and Certification
1003.4 Real Time
1003.5 Ada Bindings
1003.6 Security
1003.7 System Administration
1003.8 Networking
1003.9 FORTRAN Bindings

In addition to the formal committees, there are several informal committees made up of
a cros section of the members from the formal committees who share common
interests. Topics typical of those covered by the informal committees are lightweight
processes and common language binding issues.

Historically, the term POSI has referred to 1003.1, the C language binding. The term
more properly identifies the collection of standards which will result from the group of
committees.

4.2. Current State of Standardization

The committee has published its first work, an IEEE standard for the C binding to
POSIX [POSIX881. This standard has also been accepted and published as a Federal
Information Processing Standard (FIPS).

The shell and utilities standard, representing the user interface to POSIX, is expected
to be the ne zt ,me published, Laving just recently undergone formal balloting.

4.3. Approach to Standardization

The 1003.1 standard is actually a C binding to POSIX. The System Interfaces
committee chose to center its attention on the C binding because of the current
widespread acceptance of these interfaces. To develop a language independent binding
first would probably have delayed the committee so much that it may have been
labeled as unproductive, resulting in reduced support for the standard under
development, effectively killing the effort.

It is certainly undesirable to have a base standard in a family of standards which is
highly slanted towards a particular language. Pressure has been applied from many
different directions to have a language independent functional specification developed
which would form the basis for all language bindings, including the current C binding.
Fortunately, this view is not held only by the Ada community. The International
Standards Organization (ISO) will not adopt the C interface specification until a
language independent definition is developed.

Under the auspices of the System Interfaces committee, the language independent effort
has just recently started and is expected to be complete in 1991. A novel approach is
being taken to the development of this standard in that the standard development is
being done by a contractor under the supervision of the POSDI committees.

'p

Unfortunately, this same approach of doing the C binding first and then following it
later with a language independent specification has been adopted by some of the other
committees as well, most notably the tools and utilities committee, the ones expected to
produce the next published standard. The motivation for using this scheme is the same
as for the 1003.1 standard: the C definition is already in existence and is thus easier
and quicker to develop into a standard than an abstract definition. The problems this
causes for the other language binding committees are that the other bindings are forced
into an unnatural C orientation or the development of the binding is more costly
because the essential nature of the C interface must first be extracted before a proper
interface can be derived.

Ironically, one of the main forces driving this emphasis on quick development, and hence
making these shortcuts, is the federal government. The National Institute of Standards
and Technology (NIST) (US Department of Commerce) has established policies to
accelerate standards development. The leverage they use is to establish a date by
which a particular standard is to be established. If the standards committee is able to
develop an acceptable standard by that date, then the committee's standard is adopted
as a Federal Information Processing Standard (FIPS). If the committee is unready or
unwilling to support the effort, then NIST will develop the standard itself. Concern
about having an insufficient standard published forces the committees to take shortcuts
which they normally would not adopt.

4.4. Ad& Binding

Lack of a language independent specification is affecting development of the Ada
binding. The Ada committee is the first non-C binding to be developed. Much of the
effort in developing the binding is spent on determining what aspects of the standard
are necessary, as opposed to being artifacts necessary for the C definition.

The Ada community is resisting this approach very strongly. However, the potential
sers for s C interface far outnumber those resisting the approach. As a middle-ground

approach, the members of the Ada committee are suggesting changes to the standard
which will reduce the language dependence of the various standards, and therefore
reduce the effort required to do the Ada bindings.

4.4.1. AdA Binding Philosophy

The Ada/POSIX binding philosophy is one which places the Ada aspects ahead of
considerations for consistency between languages. To assist in definition of a
philosophy, three styles of development were considered:

1. Try to make the Ada standard mirror the C binding as much as possible in terms
of organisation, architecture, and interface style.

2. Use the C binding as a guide to overall structure and concept, but do not consider
it to be inviolate. Deviate wherever the application of Ada concepts would result
in a standard which is more appropriate for Ada.

3. Define a complete Ada-oriented operating interface, adopting POSIX concepts
where useful.

The Ada/GKS standard was developed primarily under the precepts of the first style.
The resulting standard is one in which the various language bindings mirror one

S

another very closely. A programmer trained in GKS in one language can be effective in
the Ada binding very quickly. However, an Ada programmer who uses all of the
features of the language finds that development style in different while creating GKS
code from the style used elsewhere in the program. One example of the style difference
is the use of return codes, rather than exceptions, to represent exceptional conditions.
In the GKS style, code is written to analyse the return codes for each function call. In
the Ada style, one writes a set of exceptions for a sequence of function calls, and writes
no code to detect the conditions; they are detected automatically.

Development style (3) results in the ultimate Ada interface, but causes significant
problems on three fronts. First, validating that the standard provides all functions
necessary for a POSDC implementation becomes extremely difficult. A sufficiently
distant abstraction can L impossible to verify. Second, the ability to demonstrate that
the standard is implementable, given some expectation of a POSDC functional
description, is also made difficult. Without an understanding of implementability, a
sufficient number of COTS implementations will not be made available. Finally,
development time for the specification grows very quickly as the interface becomes more
abstract.

Thus, choice (2) became the guide. With this model, it is expected that a high quality
standard can be produced in a reasonable time and which exhibits a usage style which
is natural to the Ads programmer.

It should be noted that the makeup of the committee dictates the style the standard
will adopt. If the committee is mostly made up of individuals who are primarily
motivated to get the most coverage for the subject of the standard (e.g. GKS, POSIX,
or SQL), then a standard will tend to be motivated by consistency of binding to the
subject and consistency across languages. If the committee is made up of experts in the
target language, who are motivated by getting access to the subject, then the
motivation will tend to be more supportive of coherent language style across subjects
and will be less coherent between languages. It is clear that STARS, like most of the
Ada community, is motivated towards consistent use of the language rather than ease
of use in multi-lingual environments.

The extreme case of subject rather than language orientation was the original SQL
standard, which was developed primarily by database experts. That standard implied
to many readers that the recommended usage pattern was to embed the SQL code
directly in the Ada source code, effectively extending the Ada language. The Ada
community spoke out very strongly against the proposed standard, which was
subsequently modified to support the module approach, a method which is much easier
to deal with from an Ada perspective. The GKS binding is another example in which
the development style was oriented towards the subject rather than the language. The
resultant binding was valid according to the Ada precept of staying within the
language, but still carried a very large FORTRAN orientation.

The POSIX standard is one of the first in which a very strong, but not radical, Ada
approach is being taken. The committee consists primarily of members of the Ada
community who desire a portable operating system interface for Ada, but have very

little interest in maintaining consistency with other languages. In fact, the guiding
precept of the committee is that it is reasonable to assume that the operating system
underlying the Ada binding is written in Ada.

9

4.4.2. Development Plan and Progrm

This first Ada/POSIX standard will encompass only the scope defined by the 1003.1
standard. Once that is complete, standardization of the other aspects of POSIX will be
resolved. A step-wise approach is being taken for two reasons. First, the number of
contributers who are able to make substantial contributions between meetings is small,
typically around five volunteers. To obtain a standard of practical value, it is
necessary to focus the committee resources on a reasonable goal. Second, and possibly
more important, is that this standard is a test of the Ada-orientation described above.
While it is fully expected that there is sufficient representation of the Ada community
and sufficient oversight by other POSDI committees to ensure the binding will be
acceptable, acceptance can only be completely determined by a public review of the
standard. Rapid acceptance is expected due to support on the committee from three
prominent Ada vendors (Alsys, VERDIX, and Meridian), two major defense contractors
(Unisys and IBM), and many other prominent members of the Ada community.

Within this first step of producing a 1003.1 compatible standard, the development plan
has two steps leading to public review. First, a binding for the "easy" parts of the
standard is to be developed, followed by the "hard" parts. The "hard" parts are those
in which there are basic conflicts between the Ada language and the operoting system
model which is highly C specific. Primary examples of the hard parts are interrupts
and signals. Other parts which cause difficulty are the execution control (process)
functions. Defining a relationship between the execution control functions and Ads
execution semantics, including tasking, may not be possible. In such a case, the
standard will leave this area to be implementation defined.

The binding for the easy parts is essentially complete and is undergoing final editing.
The binding for the harder parts has begun with several proposals presented. It is
expected that a public review can be held in 1990.

5. Conclusions

In the prior sections, the following conclusions were drawn:

- POSIX is important to STARS as a vehicle for building a portable SEE. It
provides a virtual operating system layer which enables one to construct a SEE
which is inexpensively ported.

- Commercial acceptance of POSIX, and Ada community support for the Ada
binding to POSIX, combine to assure COTS implementations will be available.

- From the perspective of a tool builder and application programmer in the SEE,
POSIX is not visible - it is completely masked by the interfaces provided by the
project database and user interface management system.

Because of the leverage one may gain by hosting the SEE on POSIX, it is very
important that STARS continues to participate in and influence the POSIX
standards effort, and in particular, the Ada binding to POSIX.

S. References

10

[CAIS-A88] Common Ada Programming Support Environment (APSE) Interface Set
(CAIS) (Reviion A), United States Department of Defense, May 1988.
(Proposed DoD-STD-1838A).

[POSIX88] IEEE Standard Portabi," Operating System Interface for Computer
Environments, The Institute of Electrical and Electronics Engineers,
Inc., September 1988. (IEEE Std 1003.1-1988).

[RAC86] DoD Requirements and Design Criteria for the Common APSE Interface
SET (CAIS), United States Department of Defense, October 1986.
(Under NOSC Contract No. N66001-8W-D-0156).

11

